Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Nanoparticles of metal‐organic frameworks (nanoMOFs) possess the unusual combination of both internal and external surfaces. While internal surfaces have been the focus of fundamental and applications‐based MOF studies, the chemistry of the external surfaces remains scarcely understood. Herein we report that specific ion interactions with nanoparticles of Cu(1,2,3‐triazolate)2(Cu(TA)2) resemble the Hofmeister behavior of proteins and the supramolecular chemistry of synthetic macromolecules. Inspired by these anion‐selective interactions, we tested the performance of Cu(TA)2nanoparticles as chemical field effect transistor (ChemFET) anion sensors. Rather than size‐based selectivity, the detection limits of the devices exhibit a Hofmeister trend, with the greatest sensitivity towards anions perchlorate, iodide, and nitrate. These results highlight the importance of the pore‐based supramolecular interactions, rather than localized donor‐acceptor pairs, in designing MOF‐based technologies.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Chemical shape and size play a critical role in chemistry. The van der Waals (vdW) radius, a familiar manifold used to quantify size by assuming overlapping spheres, provides rapid estimates of size in atoms, molecules, and materials. However, the vdW method may be too rigid to describe highly polarized systems and chemical species that stray from spherical atomistic environments. To deal with these exotic chemistries, numerous alternate methods based on electron density have been presented. While each boasts inherent generality, all define the size of a chemical system, in one way or another, by its electron density. Herein, we revisit the longstanding problem of assessing sizes of atoms and molecules, instead through examination of the local electric field produced by them. While conceptually different than nuclei-centered methods like that of van der Waals, the field assesses chemically affected volumes . This approach implicitly accounts for long-range fields in highly polar systems and predicts that cations should affect more space than neutral counterparts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
